Could Not Open Language File English.lng Dev C++
- Could Not Open Language File English.lng Dev C 2017
- Could Not Open Language File English Lng Dev C++
- Could Not Open Language File English.lng Dev C Youtube
- Could Not Open Language File English.lng Dev C 4
- Could Not Open Language File English.lng Dev C Online
I am having trouble with my C code. The problem is that my code isn't giving me the correct logic outputs, Also, my teacher said to MUST MAKE the output look like this: this is the code I have so far, and any help is very appreciated:) Thanks! Oh, and NO advanced stuff please, teacher said its. Apr 02, 2017 This feature is not available right now. Please try again later.
ofstream
: Stream class to write on filesifstream
: Stream class to read from filesfstream
: Stream class to both read and write from/to files.
These classes are derived directly or indirectly from the classes
istream
and ostream
. We have already used objects whose types were these classes: cin
is an object of class istream
and cout
is an object of class ostream
. Therefore, we have already been using classes that are related to our file streams. And in fact, we can use our file streams the same way we are already used to use cin
and cout
, with the only difference that we have to associate these streams with physical files. Let's see an example:This code creates a file called
example.txt
and inserts a sentence into it in the same way we are used to do with cout
, but using the file stream myfile
instead.But let's go step by step:
Open a file
The first operation generally performed on an object of one of these classes is to associate it to a real file. This procedure is known as to open a file. An open file is represented within a program by a stream (i.e., an object of one of these classes; in the previous example, this wasmyfile
) and any input or output operation performed on this stream object will be applied to the physical file associated to it.In order to open a file with a stream object we use its member function
open
:Could Not Open Language File English.lng Dev C 2017
open (filename, mode);
Where
filename
is a string representing the name of the file to be opened, and mode
is an optional parameter with a combination of the following flags:ios::in | Open for input operations. |
ios::out | Open for output operations. |
ios::binary | Open in binary mode. |
ios::ate | Set the initial position at the end of the file. If this flag is not set, the initial position is the beginning of the file. |
ios::app | All output operations are performed at the end of the file, appending the content to the current content of the file. |
ios::trunc | If the file is opened for output operations and it already existed, its previous content is deleted and replaced by the new one. |
All these flags can be combined using the bitwise operator OR (
). For example, if we want to open the file example.bin
in binary mode to add data we could do it by the following call to member function open
:Each of the
open
member functions of classes ofstream
, ifstream
and fstream
has a default mode that is used if the file is opened without a second argument:class | default mode parameter |
---|---|
ofstream | ios::out |
ifstream | ios::in |
fstream | ios::in ios::out |
For
ifstream
and ofstream
classes, ios::in
and ios::out
are automatically and respectively assumed, even if a mode that does not include them is passed as second argument to the open
member function (the flags are combined).For
fstream
, the default value is only applied if the function is called without specifying any value for the mode parameter. If the function is called with any value in that parameter the default mode is overridden, not combined.File streams opened in binary mode perform input and output operations independently of any format considerations. Non-binary files are known as text files, and some translations may occur due to formatting of some special characters (like newline and carriage return characters).
Since the first task that is performed on a file stream is generally to open a file, these three classes include a constructor that automatically calls the
open
member function and has the exact same parameters as this member. Therefore, we could also have declared the previous myfile
object and conduct the same opening operation in our previous example by writing:Combining object construction and stream opening in a single statement. Both forms to open a file are valid and equivalent.
To check if a file stream was successful opening a file, you can do it by calling to member
is_open
. This member function returns a bool
value of true
in the case that indeed the stream object is associated with an open file, or false
otherwise:Closing a file
When we are finished with our input and output operations on a file we shall close it so that the operating system is notified and its resources become available again. For that, we call the stream's member functionclose
. This member function takes flushes the associated buffers and closes the file:Once this member function is called, the stream object can be re-used to open another file, and the file is available again to be opened by other processes.
In case that an object is destroyed while still associated with an open file, the destructor automatically calls the member function
close
.Text files
Text file streams are those where theios::binary
flag is not included in their opening mode. These files are designed to store text and thus all values that are input or output from/to them can suffer some formatting transformations, which do not necessarily correspond to their literal binary value.Writing operations on text files are performed in the same way we operated with
cout
:Reading from a file can also be performed in the same way that we did with
cin
:This last example reads a text file and prints out its content on the screen. We have created a while loop that reads the file line by line, using getline. The value returned by getline is a reference to the stream object itself, which when evaluated as a boolean expression (as in this while-loop) is
true
if the stream is ready for more operations, and false
if either the end of the file has been reached or if some other error occurred.Checking state flags
The following member functions exist to check for specific states of a stream (all of them return abool
value): bad()
- Returns
true
if a reading or writing operation fails. For example, in the case that we try to write to a file that is not open for writing or if the device where we try to write has no space left. fail()
- Returns
true
in the same cases asbad()
, but also in the case that a format error happens, like when an alphabetical character is extracted when we are trying to read an integer number. eof()
- Returns
true
if a file open for reading has reached the end. good()
- It is the most generic state flag: it returns
false
in the same cases in which calling any of the previous functions would returntrue
. Note thatgood
andbad
are not exact opposites (good
checks more state flags at once).
The member function
clear()
can be used to reset the state flags.get and put stream positioning
All i/o streams objects keep internally -at least- one internal position:ifstream
, like istream
, keeps an internal get position with the location of the element to be read in the next input operation.ofstream
, like ostream
, keeps an internal put position with the location where the next element has to be written.Finally,
fstream
, keeps both, the get and the put position, like iostream
.These internal stream positions point to the locations within the stream where the next reading or writing operation is performed. These positions can be observed and modified using the following member functions:
tellg() and tellp()
These two member functions with no parameters return a value of the member typestreampos
, which is a type representing the current get position (in the case of tellg
) or the put position (in the case of tellp
).seekg() and seekp()
These functions allow to change the location of the get and put positions. Both functions are overloaded with two different prototypes. The first form is:seekg ( position );
seekp ( position );
Using this prototype, the stream pointer is changed to the absolute position
position
(counting from the beginning of the file). The type for this parameter is streampos
, which is the same type as returned by functions tellg
Could Not Open Language File English Lng Dev C++
andtellp
.The other form for these functions is:
seekg ( offset, direction );
seekp ( offset, direction );
Using this prototype, the get or put position is set to an offset value relative to some specific point determined by the parameter
direction
. offset
is of type streamoff
. And direction
is of type seekdir
, which is an enumerated type that determines the point from where offset is counted from, and that can take any of the following values:ios::beg | offset counted from the beginning of the stream |
ios::cur | offset counted from the current position |
ios::end | offset counted from the end of the stream |
The following example uses the member functions we have just seen to obtain the size of a file:
Notice the type we have used for variables
begin
and Could Not Open Language File English.lng Dev C Youtube
end
:streampos
is a specific type used for buffer and file positioning and is the type returned by file.tellg()
. Values of this type can safely be subtracted from other values of the same type, and can also be converted to an integer type large enough to contain the size of the file.These stream positioning functions use two particular types:
streampos
and streamoff
. These types are also defined as member types of the stream class:Type | Member type | Description |
---|---|---|
streampos | ios::pos_type | Defined as fpos<mbstate_t> .It can be converted to/from streamoff and can be added or subtracted values of these types. |
streamoff | ios::off_type | It is an alias of one of the fundamental integral types (such as int or long long ). |
Each of the member types above is an alias of its non-member equivalent (they are the exact same type). It does not matter which one is used. The member types are more generic, because they are the same on all stream objects (even on streams using exotic types of characters), but the non-member types are widely used in existing code for historical reasons.
Binary files
For binary files, reading and writing data with the extraction and insertion operators (<<
and >>
) and functions like getline
is not efficient, since we do not need to format any data and data is likely not formatted in lines.File streams include two member functions specifically designed to read and write binary data sequentially:
write
and read
. The first one (write
) is a member function of ostream
(inherited by ofstream
). And read
is a member function of istream
(inherited by ifstream
). Objects of class fstream
have both. Their prototypes are:write ( memory_block, size );
read ( memory_block, size );
Where
memory_block
is of type char*
(pointer to char
), and represents the address of an array of bytes where the read data elements are stored or from where the data elements to be written are taken. The size
parameter is an integer value that specifies the number of characters to be read or written from/to the memory block.In this example, the entire file is read and stored in a memory block. Let's examine how this is done:
First, the file is open with the
ios::ate
flag, which means that the get pointer will be positioned at the end of the file. This way, when we call to member tellg()
, we will directly obtain the size of the file.Once we have obtained the size of the file, we request the allocation of a memory block large enough to hold the entire file:
Right after that, we proceed to set the get position at the beginning of the file (remember that we opened the file with this pointer at the end), then we read the entire file, and finally close it:
At this point we could operate with the data obtained from the file. But our program simply announces that the content of the file is in memory and then finishes.
Buffers and Synchronization
When we operate with file streams, these are associated to an internal buffer object of typestreambuf
. This buffer object may represent a memory block that acts as an intermediary between the stream and the physical file. For example, with an ofstream
, each time the member function put
(which writes a single character) is called, the character may be inserted in this intermediate buffer instead of being written directly to the physical file with which the stream is associated.The operating system may also define other layers of buffering for reading and writing to files.
When the buffer is flushed, all the data contained in it is written to the physical medium (if it is an output stream). This process is called synchronization and takes place under any of the following circumstances:
- When the file is closed: before closing a file, all buffers that have not yet been flushed are synchronized and all pending data is written or read to the physical medium.
- When the buffer is full: Buffers have a certain size. When the buffer is full it is automatically synchronized.
- Explicitly, with manipulators: When certain manipulators are used on streams, an explicit synchronization takes place. These manipulators are:
flush
andendl
. - Explicitly, with member function sync(): Calling the stream's member function
sync()
causes an immediate synchronization. This function returns anint
value equal to -1 if the stream has no associated buffer or in case of failure. Otherwise (if the stream buffer was successfully synchronized) it returns0
.
Previous: Preprocessor directives | Index |
C++20 introduces modules, a modern solution for componentization of C++ libraries and programs. A module is a set of source code files that are compiled independently of the translation units that import them. Modules eliminate or greatly reduce many of the problems associated with the use of header files, and also potentially reduce compilation times. Macros, preprocessor directives, and non-exported names declared in a module are not visible and therefore have no effect on the compilation of the translation unit that imports the module. You can import modules in any order without concern for macro redefinitions. Declarations in the importing translation unit do not participate in overload resolution or name lookup in the imported module. After a module is compiled once, the results are stored in a binary file that describes all the exported types, functions and templates. That file can be processed much faster than a header file, and can be reused by the compiler every place where the module is imported in a project.
Modules can be used side by side with header files. A C++ source file can import modules and also #include header files. In some cases, a header file can be imported as a module rather than textually #included by the preprocessor. We recommend that new projects use modules rather than header files as much as possible. For larger existing projects under active development, we suggest that you experiment with converting legacy headers to modules to see whether you get a meaningful reduction in compilation times.
Enable modules in the Microsoft C++ compiler
As of Visual Studio 2019 version 16.2, modules are not fully implemented in the Microsoft C++ compiler. You can use the modules feature to create single-partition modules and to import the Standard Library modules provided by Microsoft. To enable support for modules, compile with /experimental:module and /std:c++latest. In a Visual Studio project, right-click the project node in Solution Explorer and choose Properties. Set the Configuration drop-down to All Configurations, then choose Configuration Properties > C/C++ > Language > Enable C++ Modules (experimental).
A module and the code that consumes it must be compiled with the same compiler options.
Consume the C++ Standard Library as modules
Although not specified by the C++20 standard, Microsoft enables its implementation of the C++ Standard Library to be imported as modules. By importing the C++ Standard Library as modules rather than #including it through header files, you can potentially speed up compilation times depending on the size of your project. The library is componentized into the following modules:
- std.regex provides the content of header <regex>
- std.filesystem provides the content of header <filesystem>
- std.memory provides the content of header <memory>
- std.threading provides the contents of headers <atomic>, <condition_variable>, <future>, <mutex>, <shared_mutex>, and <thread>
- std.core provides everything else in the C++ Standard Library
To consume these modules, just add an import declaration to the top of the source code file. For example:
To consume the Microsoft Standard Library module, compile your program with /EHsc and /MD options.
Basic example
The following example shows a simple module definition in a source file called Foo.ixx. The .ixx extension is required for module interface files in Visual Studio. In this example, the interface file contains the function definition as well as the declaration. However, the definitions can be also placed in one or more separate files (as shown in a later example). The export module Foo statement indicates that this file is the primary interface for a module called Foo
. The export modifier on f()
indicates that this function will be visible when Foo
is imported by another program or module. Note that the module references a namespace Bar
.
The file MyProgram.cpp uses the import declaration to access the name that is exported by Foo
. Note that the name Bar
is visible here, but not all of its members. Also note that the macro ANSWER
is not visible.
The import declaration can appear only at global scope.
Implementing modules
You can create a module with a single interface file (.ixx) that exports names and includes implementations of all functions and types. You can also put the implementations in one or more separate implementation files, similar to how .h and .cpp files are used. The export keyword is used in the interface file only. An implementation file can import another module, but cannot export any names. Implementation files may be named with any extension. An interface file and the set of implementation files that back it are treated as a special kind of translation unit called a module unit. A name that is declared in any implementation file is automatically visible in all other files within the same module unit.
For larger modules, you can split the module into multiple module units called partitions. Each partition consists of an interface file backed by one or more implementation files. (As of Visual Studio 2019 version 16.2, partitions are not yet fully implemented.)
Modules, namespaces, and argument-dependent lookup
The rules for namespaces in modules are the same as in any other code. If a declaration within a namespace is exported, the enclosing namespace (excluding non-exported members) is also implicitly exported. If a namespace is explicitly exported, all declarations within that namespace definition are exported.
When performing argument-dependent lookup for overload resolutions in the importing translation unit, the compiler considers functions which are declared in the same translation unit (including module interfaces) as where the type of the function's arguments are defined.
Module partitions
Note
This section is provided for completeness. Partitions are not yet implemented in the Microsoft C++ compiler.
A module can be componentized into partitions, each consisting of an interface file and zero or more implementation files. A module partition is similar to a module, except that it shares ownership of all declarations in the entire module. All names that are exported by partition interface files are imported and re-exported by the primary interface file. A partition's name must begin with the module name followed by a colon. Declarations in any of the partitions are visible within the entire module. No special precautions are needed to avoid one-definition-rule (ODR) errors. You can declare a name (function, class, etc.) in one partition and define it in another. A partition implementation file begins like this:
and the partition interface file begins like this:
To access declarations in another partition, a partition must import it, but it can only use the partition name, not the module name:
The primary interface unit must import and re-export all the module's interface partition files like this:
The primary interface unit can import partition implementation files, but cannot export them because those files are not allowed to export any names. This enables a module to keep implementation details internal to the module.
Modules and header files
Could Not Open Language File English.lng Dev C 4
You can include header files in a module source file by putting the #include
directive before the module declaration. These files are considered to be in the global module fragment. A module can only see the names in the global module fragment that are in headers it explicitly includes. The global module fragment only contains symbols that are actually used.
You can use a traditional header file to control which modules are imported:
Imported header files
Note
This section is informational only. Legacy imports are not yet implemented in the Microsoft C++ compiler.
Some headers are sufficiently self-contained that they are allowed to be brought in using the import keyword. The main difference between an imported header and an imported module is that any preprocessor definitions in the header are visible in the importing program immediately after the import statement. (Preprocessor definitions in any files included by that header are not visible.)